中國主導的3G國際標準TD-SCDMA有六大技術特點,其中有一項就是智能天線,在基站上布設天線陣列,通過對射頻信號相位的控制,使得相互作用后的電磁波的波瓣變得非常狹窄,并指向它所提供服務的手機,而且能跟據手機的移動而轉變方向。
由全向的信號覆蓋變為了精準指向性服務,這種新形式的無線電波束就不會干擾到其它方向的波束,從而可以在相同的空間中提供更多的通信鏈路,這種充分利用空間的無線電波束技術是一種空間復用技術,這種技術可以極大地提高基站的服務容量。
遺憾的是這項技術并非在3G時代得到應用,但在5G入網設備數量成百上千倍增加的情況下,這種波束賦形技術所能帶來的容量增加就顯得非常有價值,波束賦形技術很可能成為5G的關鍵性技術之一。
波束賦形技術不僅能大幅度增加容量,還可大幅度提高基站定位精度,當前的手機基站定位的精度很粗劣,這是源于基站全向輻射的模式。而當波束賦型技術成功應用后,基站對手機的輻射波瓣是很窄的,這就知道了手機相對于基站的方向角,再加上通過接收功率大小推導出手機與基站的距離,就可以實現手機的精準定位了,并因此而擴展出非常多的定位增值服務。
6、綜合分析
任何更新換代的關鍵性技術,都必須是經歷過多年研究的成熟技術,按規劃還有5年就要進入5G時代了,不太可能突然出現一個全新的技術并被吸納為5G的國際標準中,考察5G的技術發展脈絡還得從成熟技術中尋找答案。
在傳統的宏基站大覆蓋的情況下提速是非常困難的,20%的頻譜利用率的提升都是了不起的成就,而在5G時代的千倍提速要求面前,這種內部挖潛的方法是行不通的,只有通過大幅度的加大帶寬才有可能。
加大帶寬是起點,由此而產生的毫米波、微基站、高階MIMO、波束賦型等都是順理成章的技術趨勢。只要把基站做得足夠小,其服務范圍變窄了,單個用戶獲得的資源就能足夠大,速度就可以提高到足夠快。
所以說,5G的任何一項關鍵技術都不會有革命性的突破,其上千倍綜合能力的提升,更多地是來自移動網絡的重新布局。