第一批神經網絡應用程序將專注于視覺處理,以支持諸如自動行人、交通信號或道路特征識別等功能。由于這些系統的性能不斷改進,例如處理越來越大的來自高分辨率相機的數據集,因此神經網絡也有望在未來的汽車中發揮更大的作用。這些作用將包括承擔系統中其它復雜的信號處理任務,例如雷達模塊及語音識別系統。
隨著神經網絡首次應用于車載自動駕駛系統,(據報道,某些國家將在 2019-2020 年型的新車輛中使用神經網絡)對同時兼具安全性及可靠性的系統的需求會越來越大。中國政府計劃在 2021 至 2025 年推出自動駕駛車輛。要讓此類系統具備可讓客戶使用的條件,汽車制造商必須同時確保其符合相關的安全標準,如 ISO 26262 功能安全性。這需要硬件、軟件及系統的綜合發展。
由于這些系統變得越來越復雜,因此確保系統可靠安全且能滿足處理需求也成為汽車制造商所面臨的越來越大的挑戰。
結論
機器學習神經網絡將沿著一條挑戰高效處理性能的發展道路繼續闊步前進。先進的神經網絡架構已經顯現出優于人類的識別精確性。用于生成網絡的最新框架,如 CDNN2,正在推動輕型、低功耗嵌入式神經網絡的發展。這種神經網絡將使目前的高級輔助駕駛系統具有較高的精確性及實時處理能力。