無刷直流電機(BrushlessDCMotor,以下簡稱BLDCM)是隨著電力電子技術及新型永磁材料的發展而迅速成熟起來的一種新型電機。以其啟動轉矩大、調速性能好、效率高、過載能力強、性能穩定、控制結構簡單等優點,同時還保留了普通直流電機優良的機械特性,廣泛應用于伺服控制、數控機床、機器人等領域。
隨著BLDCM應用領域的不斷擴大,對控制系統設計提出了更高的要求。為此,建立BLDCM控制系統的可視化仿真模型,可以有效的減少控制系統的設計時間,同時充分利用Simulink仿真的優越性,加入不同的擾動以及變化的參數,以便考察系統在不同控制條件下的動、靜態特性。在分析了BLDCM數學模型的基礎上,借助MATLAB的Simulink工具,建立了BLDCM控制系統的仿真模型,并利用該模型,進行了控制系統的仿真試驗,結果表明,通過該仿真模型驗證了數學模型的有效性及控制系統的合理性。
1.無數直流電機的總體設計
BLDCM由定子三相繞組、永磁轉子、逆變器、轉子磁極位置檢測器等組成,其轉子采用瓦形磁鋼,進行特殊的磁路設計,可獲得梯形波的氣隙磁場,定子繞組采用集中整距繞組,由逆變器提供給方波電流。BLDCM梯形波反電動勢和方波電流之間的關系,如圖1所示。

BLDCM的反電動勢波形是梯形波,并且定子和轉子間的互感是非正弦的,在此,采用感應電動機d-q變換理論的方法進行分析效果不理想,而直接利用電動機原有的相變量法,根據轉子位置,采用分段線性表示感應電動勢。
本文以兩相導通星形三相六狀態方式下,分析BLDCM的數學模型及電磁轉矩等特性。為了方便分析,作如下假設:
(1)三相繞組完全對稱,氣隙磁場分布為梯形波,平頂寬為120°電角度;
(2)忽略齒槽、換相過程和電樞反應的影響;
(3)磁路不飽和,不計渦流和磁滯損耗;
(4)電樞繞組在定子內表面均勻連續分布。
則根據BLDCM的特性,可建立其電壓平衡方程、電磁轉矩方程以及轉子運動方程。
1.1電壓平衡方程
BLDCM三相定子電壓的平衡方程可用以下方程表示:

其中,ua、ub、uc為定子相繞組電壓;ia、ib、ic為定子相繞組電流;ea、eb、ec為定子相繞組反電勢;L為每相繞組的自感;r為每相繞組的內阻;M為每兩相繞組的互感。
由于轉子磁阻不隨轉子的位置變化,因而定子繞組的自感和互感為常數。當采用Y形聯結時,ia+ib+ic=0,因而有:

2.無刷直流電機模型設計
在MatlabR2012的Simulink環境下,利用SimPowerSystemToolbox5.6豐富的模塊庫,在分析BLDCM數學模型的基礎上,建立BLDCM控制系統仿真模型,系統設計框圖如圖2所示。
