PDN的工作是保持恒壓及為每個有源器件提供足夠的電流。它影響著每個要素的性能,不管是有源還是無源。PDN包括整個系統,而不只是VRM (穩壓器模塊)和內部芯片配電,而是包括每個互連、軌跡、通路、連接器、電容器、封裝、引腳和球柵。其性能取決于SERDES特點及系統整體有效的串聯阻抗、ESR、ESC和ESL (有效串聯電阻、電容和電感)。
紋波對隨機性/周期性抖動的影響
電源軌道噪聲通常稱為紋波,一般在幾毫伏。在幾GHz頻率的電源軌道上準確測量幾mV噪聲,要求使用高DC阻抗的高帶寬探頭,其在高頻下作為50 Ω傳輸線操作。TPR1000和TPR4000電源軌道探頭就是專為這一目的設計的。在選配6系列B MSO數字功率管理(6-DPM)分析包后,您可以在多條電源軌跡上自動進行功率分析,該分析包可以方便地進行關鍵抖動測量(TIE, RJ, DJ, PJ)。
開關式電源調節電源軌道和回路(即“地面”)之間的電壓,在低耗散開關狀態之間連續切換,通過改變開/關占空比,實現恒壓。通過避免高耗散狀態,它們浪費的功率要遠遠低于線性電源。遺憾的是,驅動開關單元的開/關脈寬模式可能會感應“開關噪聲”,導致周期性抖動。
圖6. 左上方Spectrum View頻譜視圖中的電源軌道紋波
開關以固定頻率發生,應記錄在VRM產品技術資料中。如圖6左上方所示,如果紋波頻譜及緊下方的TIE頻譜在開關頻率上都有雜散信號,那么我們知道其來源,可以處理設計。注意圖6中紅色標記處的大的重疊雜散信號。TIE頻譜右面的TIE直方圖有簽名正弦曲線抖動分布 (馬蹄鐵形),在一個頻率上有周期性抖動。
電源可能會引入隨機性噪聲,導致隨機性抖動。電源軌道隨機性噪聲在圖7表現為左上方Spectrum View頻譜視圖的噪底。在這個實例中,功率紋波引起的隨機性噪聲很低,隨機性抖動很小,約為0.84 ps。
周期性抖動和地面彈跳
在邏輯跳變過程中,發射機和接收機為PDN提供電流,或從PDN接收電流。當多個信號在不同電平之間同時切換時,它們可能會沉積電荷或從電源軌道和/或地平面中移除大量的電荷。短期引入電荷密度會改變本應在導體中作為公共接地的電壓。得到的電壓變化稱為地面彈跳,也可以稱為同時開關噪聲(SSN)。
先闡明幾點:第一,這里所說的“地面”,指的是回路希望的公共基準電壓,其通常定義為0 V;第二,“同時”指的是在上升/下降時間重疊時,在這個時間間隔內多個元器件同時提供或接收電荷。
圖7. (a)電源軌道紋波頻譜和 (b) TIE/抖動頻譜
SSN在時域中看上去是隨機的,但在頻域中看上去不是隨機的。數據信號由許多頻率成分組成,包括基礎頻率或內奎斯特頻率,可能多達兩個更高諧波,外加來自連續的完全相同的位的子諧波。同時開關可能發生在任何頻率上。因此,SSN是周期性噪聲,有許多低幅度雜散信號,可能會導致周期性抖動。為了確認周期性抖動是由SSN導致的,對比圖7左上方的電源軌道頻譜與緊下方的TIE頻譜。在兩個頻譜中,高幅度雜散信號都出現在相同的頻率上,表明周期性抖動主要源于SSN。
小結
信號完整性和功率完整性是一個反饋回路。網絡中的每個要素、每條軌跡、通路、連接器、引腳、封裝等,都會影響PDN阻抗和每條通道的阻抗,每個有源器件都會改變電源軌道和地平面的電壓。眼圖可能告訴我們與信號完整性有關的許多東西,但幾乎不能幫助我們確定具體問題。通過分析TIE分布,我們可以把抖動分成不同的成分,了解問題出在哪兒。隨機性抖動高,通常意味著時鐘有噪聲,但也表明電源有隨機性噪聲。
周期性抖動可能表明時鐘有問題,電源有開關噪聲,或存在地面彈跳/SSN。對比電源軌道紋波頻譜與TIE頻譜,可以分兩步隔離問題。TIE頻譜中有雜散信號,但在電源軌道頻譜中沒有任何對應的雜散信號,表示時鐘有問題。在兩個頻譜的相同頻率上有一個或兩個雜散信號,表明存在電源開關噪聲。兩個頻譜都有大量的雜散信號,表明SSN有問題。不管是哪種情況,進行抖動和功率綜合分析都能隔離很多棘手的問題。
信號完整性和功率完整性通常被視為不同的兩個學科,只有同時了解這兩者,才能找到與高抖動有關的問題。MSO6B提供了必要的工具,在簡便易用的觸摸屏環境中把這兩個學科結合在一起。