深入分析
此處順便提及一下干擾信號的傳播,可通過空間或導體傳播,空間干擾方式可分為感應和輻射,輻射通常以電磁波方式傳播。感應發生在較近距離內,干擾源若是高電壓小電流則以電場干擾為主,低壓大電流則以磁場為主。對于敏感設備,高阻抗節點易受電場干擾,應使用電場屏蔽,屏蔽導體接地。低阻抗閉合回路易受磁場干擾,應盡可能減少環路面積。傳導干擾通過器件、線路以共模或差模方式傳播,如果設備或線路不平衡共模則會轉化為差模信號疊加在有用信號中。
本例以傳導干擾為主,所用方法基于以下的原因解決問題。
1)通過寬大的屏蔽層對高頻信號呈現較低的阻抗,減少電機平臺和測控柜的地電勢差,干擾電流通過較低阻抗的屏蔽層泄放到測控柜,而不是走信號線。
2)為什么用一段導線將屏蔽層連接到測控柜卻不能改善噪聲?試驗中使用的是0.75mm2圓導線長約50cm,由于趨膚效應增大了此導線的阻抗。
3)屏蔽層與芯線通過絕緣介質形成電容,屏蔽層直接接機殼,其效果相當于穿心電容,芯線上共模電壓被此電容旁路。
4)此處電機平臺和測控柜已有接地,通過傳感器連接線屏蔽層又將兩者連接,形成地環路。然而實際工程應用中地環路往往不可避免地存在,本例中若沒有屏蔽層依然會通過C2、電纜和C3產生高頻地環路,從這方面看屏蔽層改變了環路路徑。

本文的方法僅作參考,具體問題應當具體分析并驗證。接地與屏蔽是十分復雜的學科,要考慮到現實器件的非理想特性,如實際的一根導線往往都不能等同于電路原理圖上的連線,因此對于系統中噪聲干擾需要細致地進行理論分析和實際驗證,確定合適的布局連線。
此次故障干擾排查實例充分說明了能靈活使用功率分析儀進行測試和豐富的現場排查經驗都是非常重要的,功率分析儀擁有強大的波形和測試功能,能為電機與驅動器的研發生產提供高可靠性的測試分析數據。