功率放大器 (PA) 數字預失真 (DPD),這是許多從事蜂窩系統網絡研發工作的人士將會熟悉的一個術語。將該技術遷移到電纜能夠帶來明顯的功效和性能提升,同時也帶來了巨大的挑戰。
功率放大器在非線性區域工作時,其輸出將失真。這一失真可能會影響帶內性能,還可能導致無用信號溢出到鄰道。溢出效應在無線蜂窩應用中特別重要,因此對鄰道泄漏比 (ACLR) 有嚴格的規定和控制。突出的控制技術之一是在信號到達功率放大器之前對其進行數字整形或預失真,從而消除功率放大器中的非線性。
電纜環境則完全不同。首先,可將其視為封閉環境。電纜中發生的情況不會擴展到電纜外。運營商擁有并控制整個頻譜。帶外 (OOB)失真并不是關注重點,帶內失真才是至關重要的。服務提供商必須確保最高質量的帶內傳輸通道,以便能夠利用最大的數據吞吐量。其中一個方法是使電纜功率放大器嚴格運行在線性區域內。采用這種工作模式的代價是功效極差。
![](/member/kindeditor/attached/image/20171215/20171215081710_32506.png)
圖1. 電纜功率放大器驅動器的功效
圖1概要顯示了典型的電纜應用。盡管該系統功耗近80 W,但僅傳送了2.8W信號功率。功率放大器是功效極低的A類架構。最大瞬時峰值效率可以計算為50%(當信號包絡最大時,假定為電感負載)。如果功率放大器完全在線性區域工作,則考慮電纜信號的極高峰均比(通常為14 dB)意味著放大器需要比信號壓縮開始時平均低14 dB的工作條件,從而確保即使在信號的峰值處也不會發生信號壓縮?;赝伺c放大器工作效率直接相關。當放大器回退14 dB以適應各種電纜信號時,工作效率將降低10–14/10。因此,工作效率從理論上的最大值50%降低到10–14/10 × 50% = 2%。圖2概要顯示了上述情況。
![](/member/kindeditor/attached/image/20171215/20171215081727_44881.png)
圖2. 高峰均比推動回退工作模式并使效率大幅降低
總而言之,功效是主要問題。損失功率會影響成本,但同樣重要的是,它還消耗了電纜分配系統中的稀缺資源。電纜運營商增加了更多功能和服務,因此需要進行更多的處理,而處理所需的功率可能會受現有功率預算的限制。如果能從低效功率放大器中設法獲取浪費的功耗,那么可以將其重新分配給這些新功能。
針對功率放大器低效提出的解決方案是數字預失真。這是整個無線蜂窩行業普遍采用的一種方法。數字預失真允許用戶在更高效但非線性更明顯的區域中運行功率放大器,然后先預先校正數字域中的失真,再將數據發送到功率放大器。數字預失真的本質是在數據到達功率放大器之前對其進行整形,以抵消功率放大器產生的失真,從而擴大功率放大器的線性范圍,如圖3所示。這一擴大后的線性范圍可用于支持更高質量的處理,提供較低的調制誤差率 (MER),1或者允許功率放大器以更低偏置設置運行,從而節省功耗。盡管數字預失真已廣泛應用于無線蜂窩基礎設施,但在電纜環境中實施數字預失真有獨特而又有挑戰性的要求。
![](/member/kindeditor/attached/image/20171215/20171215081742_76441.png)
圖3. 數字預失真概述
如圖4所示,電纜應用的實際工作效率約為3.5%!實施數字預失真可以降低系統的功率要求,由原來的80 W降低到61 W,節約19 W,節電率達到24%。每個功率放大器以前的功率要求為17.5 W,現在則下降到12.8 W。
![](/member/kindeditor/attached/image/20171215/20171215081800_24713.png)