參數(shù)(S/N)min與調(diào)制/解調(diào)階數(shù)相關(guān)。在相同的信噪比下,低階調(diào)制可得到更低的誤碼率,而在相同的誤碼率下,高階調(diào)制需要更高的信噪比來解調(diào)。因此,如果發(fā)射器離接收器很遠,則接收到的信號較弱,信噪比不足以支持高階解調(diào)。為了使發(fā)射器保持在線狀態(tài),并使視頻格式保持同一視頻數(shù)據(jù)速率,則基帶應(yīng)使用低階調(diào)制,其代價是增加帶寬。這樣有助于確保接收到的圖像清晰不模糊。幸運的是,我們可通過具有數(shù)字調(diào)制和解調(diào)功能的軟件定義無線電來改變調(diào)制方式。上述分析基于這樣的假設(shè)條件:發(fā)射器的RF功率保持恒定。在天線增益相同時,較大的RF發(fā)射功率將能達到更遠處具有相同接收靈敏度的接收器,盡管如此,最大發(fā)射功率應(yīng)符合FCC/CE輻射標(biāo)準(zhǔn)。
此外,載波頻率也會對傳輸距離產(chǎn)生影響。當(dāng)波在空間中傳播時,會發(fā)生散射損耗。自由空間損耗可由下式確定
其中R為距離,λ為波長,f為頻率,C為光速。因此,在相等的自由空間距離上,頻率越高,損耗越大。例如,相較于2.4 GHz,載波頻率為5.8 GHz時在相同傳輸距離上的衰減將超過7.66 dB。
RF頻率和頻率切換
AD9361/AD9364輸出覆蓋70 MHz至6 GHz的可編程頻率范圍。這將能滿足大多數(shù)NLOS頻率應(yīng)用,包括不同類型的特許執(zhí)照和免執(zhí)照頻段,比如1.4 GHz、2.4 GHz和5.8 GHz。
2.4 GHz頻段已廣泛用于Wi-Fi、Bluetooth®以及物聯(lián)網(wǎng) (IoT) 短程通信,因此變得越來越擁擠。該頻段用于無線視頻傳輸和控制信號將會增大信號干擾的幾率和不穩(wěn)定性。從而導(dǎo)致無人飛行器陷入不良情況,這些情況往往十分危險。使用頻率切換技術(shù)保持干凈的頻率通道,將確保數(shù)據(jù)和控制連接更可靠。當(dāng)發(fā)射器覺察到擁擠頻率時,它會自動切換到其他頻帶。例如,兩架同時使用相同頻率并且近距離工作的無人飛行器將會相互干擾對方的通信。自動切換LO頻率并重新選擇頻帶將有助于維持穩(wěn)定的無線鏈路。在上電期間自適應(yīng)選擇載波頻率或通道是高端無人飛行器的一個杰出特性。
跳頻
廣泛應(yīng)用于電子對抗 (ECM) 的快速跳頻技術(shù)也有助于避免干擾。通常情況下,如果我們想要跳頻,PLL需在程序執(zhí)行后重新鎖定。該過程包括寫頻率寄存器,然后經(jīng)過VCO校準(zhǔn)時間和PLL鎖定時間,因此跳頻間隔約為幾百微秒。圖7顯示了跳頻發(fā)射器的LO頻率從816.69 MHz跳變至802.03 MHz的例子。AD9361用于正常頻率變化模式,發(fā)射器RF輸出頻率從814.69 MHz跳變至800.03 MHz,參考頻率為10 MHz。跳頻時間通過E5052B測得,如圖7所示。根據(jù)圖7b,VCO校準(zhǔn)和PLL鎖定時間約為500 μs。信號源分析儀E5052B可用來捕捉PLL的瞬態(tài)響應(yīng)。圖7a顯示了瞬態(tài)測量的寬帶模式,而圖7b和7d以顯著高分辨率顯示了跳頻時的頻率和相位瞬態(tài)測量值。6圖7c則顯示了輸出功率響應(yīng)。
