在圖2和圖3中的點1,無人機的超聲波傳感器發(fā)出聲波,在返回信號處理路徑上表示為飽和數(shù)據(jù)。發(fā)送后,信號處理路徑變?yōu)殪o音(點2),直到回波從物體反射回來(點3)為止。
圖3:超聲波ToF的相位
公式1計算從無人機到地面或從無人機到另一個物體的距離:
距離(d)是從無人機上的超聲波傳感器到地面/物體的距離,ToF(t)是前面定義的ToF,而SpeedOfSound(v)是通過介質的聲速。ToF(t)×SpeedOfSound(v)除以2,因為ToF計算超聲回波往返物體的時間。
為什么要將超聲波感應用于無人機著陸?
雖然眾多的傳感技術可以檢測物體的接近程度,但是超聲波傳感可在無人機著陸時的探測距離、方案成本以及不同表面的可靠性方面良好運行。
無人機地面跟蹤和著陸的共同要求是能夠可靠地檢測到距離地面5米高的距離。假設信號調節(jié)和處理正確,40-60kHz范圍內的超聲波傳感器通??梢詽M足這個范圍。
德州儀器的PGA460是超聲波信號處理器和傳感器驅動器,用于無人機等空氣耦合應用中的超聲波傳感,可達到或超過5米的要求。然而,超聲波傳感的協(xié)調是物體近場檢測中的限制。所有用于空氣耦合應用的超聲波傳感器都有一段激勵期,稱為衰減時間或振蕩時間,在這個時間內,壓電薄膜振動并發(fā)出超聲波能量,難以檢測到任何進入的回波。
為了在振鈴期間有效地測量物體,許多無人機設計者為發(fā)射機和接收機安裝單獨的傳感器。通過分離接收器,無人機可以在發(fā)射器的激勵期間檢測物體。因此PGA460具有優(yōu)越的近場檢測性能——低至5cm或更少。
超聲波傳感技術也是一項具有成本競爭力的技術,特別是在使用PGA460等集成解決方案時,其中已包括大部分所需的芯片。PGA460既可以使用半橋或H橋直接驅動傳感器,也可以使用變壓器驅動傳感器;后者主要用于密封的的“密閉”傳感器。PGA460還包括用于接收和調節(jié)超聲回波的完整模擬前端。此外,該器件還可以通過數(shù)字信號處理來計算ToF(見圖4)。

圖4:PGA460功能框圖
最后,超聲波傳感可以檢測其他技術難以解決的的表面。例如,無人機經(jīng)常會遇到建筑物上的玻璃窗和其他玻璃表面。光傳感技術有時會穿過玻璃和其他透明材料,這對無人機懸停在玻璃建筑物上造成困難。超聲波則能夠可靠地反射出玻璃表面。
雖然超聲波傳感主要用于無人機著陸輔助和懸停,但其強大的性價比正促使無人機設計人員探索該技術的其他應用??焖侔l(fā)展的無人機領域潛力巨大。