圖10.無濾波的輸出雜散
像對待接收通道一樣,發射側也可以生成混頻器圖表。示例如圖10所示。在此圖中,最大雜散是鏡像和LO頻率,利用混頻器之后的帶通濾波器可將其降到所需水平。在FDD系統中,雜散輸出可能會使鄰近接收機降敏,帶內雜散會帶來問題,這種情況下IF調諧的靈活性便很有用。在圖10所示例子中,如果使用5.1 GHz的靜態IF,發射機輸出端會存在一個接近15.2 GHz的交越雜散。通過將14 GHz調諧頻率時的IF調整到4.3 GHz,便可避開該交越雜散,如圖11所示。

圖11.靜態IF引起交越雜散(上),利用IF調諧避開交越雜散(下)
設計示例——寬帶FDD系統
為了展示這種架構能夠實現的性能,我們利用ADI公司成品器件構建了一個接收機和發射機FDD系統原型,其接收頻段的工作頻率范圍配置為12 GHz至16 GHz,發射頻率的工作頻率范圍為8 GHz至12 GHz。使用5.1 GHz的IF來收集性能數據。接收通道的LO范圍設置為17.1 GHz至21.1 GHz,發射通道的LO范圍設置為13.1 GHz至17.1 GHz。原型的功能框圖如圖12所示。在該圖中,X和Ku變頻器板顯示在左側,AD9371評估板顯示在右側。

圖12.X和Ku波段Rx Tx FDD原型系統功能框圖
增益、噪聲系數和IIP3數據在接收下變頻器上收集,顯示于圖13(上)中。整體而言,增益約為20 dB,NF約為6 dB,IIP3約為–2 dBm。利用均衡器可實現額外的增益調整,或者利用AD9371中的可變衰減器執行增益校準。
同時也測量了發射上變頻器,并記錄其增益、P1dB和OIP3。此數據與頻率的關系顯示于圖13(下)。增益約為27 dB,P1 dB約為22 dBm,OIP3約為32 dBm。

圖13.Ku波段Rx數據(上),X波段Tx數據(下)
當此板與集成收發器一起使用時,接收和發射的總體特性如表3所示。
表3.系統總體性能表
總的來說,接收機性能與超外差架構相當,而功耗大大降低。等效超外差設計的接收機鏈功耗會高于5 W。此外,原型板的建造并未以縮小尺寸為優先目標。利用適當的PCB布局技巧,并將AD9371集成到與下變頻器相同的PCB上,采用這種架構的解決方案總尺寸可縮小到僅4到6平方英寸,顯著小于需要近8到10平方英寸的等效超外差解決方案。此外,利用多芯片模塊(MCM)或系統化封裝(SiP)等技術可進一步縮小尺寸。這些先進技術可將尺寸縮小到2至3平方英寸。
結語
本文介紹了一種切實可行的架構——高中頻架構,它可替代傳統方法,大幅改進SWaP。文中簡要說明了超外差架構以及接收機設計的重要規格。然后介紹高中頻架構,并闡釋其在濾波要求和集成度(可減少器件總數)方面的優勢。我們詳細說明了如何制定頻率規劃,以及如何利用可調諧IF來避開接收機上的干擾信號。在發射方面,其目標是降低輸出雜散,我們提出了一種避開帶內雜散的辦法,以及預測所有可能存在的輸出雜散產物的方法。
這種架構的實現得益于近年來集成式直接變頻接收機的迅猛發展。隨著AD9371的誕生,通過高級校準和高集成度可實現更高的性能。這種架構在未來的低SWaP市場會變得特別重要。