在各種應用中(從通信基礎設施到儀器儀表),對系統帶寬和分辨率的更高要求促進了將多個數據轉換器以陣列形式連接的需求。設計人員必須找到低噪聲、高精度解決方案,才能為使用普通JESD204B串行數據轉換器接口的大型數據轉換器陣列提供時鐘和同步。
而在很多實際應用中,數據轉換器陣列所需的大量時鐘已經超出了單個IC元件所能提供的極限。
本文提供一個關于如何構建靈活可編程時鐘擴展網絡的真實案例,它不僅具有出色的相位噪聲/抖動性能,還可將所需的同步信息從時鐘樹的第一個器件傳遞至最后一個器件,同時提供確定性控制。
簡介
無線通信系統從3G到4G和LTE(以及5G,目前正在規范討論階段)的演進是推動高速數據轉換和同步的關鍵技術因素。在蜂窩基站應用中,多種因素共同作用,提高了數據帶寬要求。主要的因素是,訂閱數量的增加導致對更為豐富的多媒體內容的需求,以及對于使用全球蜂窩基礎設施的機器間通信的新應用需求。其結果是,設計人員尋求全新的創新型RF收發器架構,這種架構具有更高的通道數,使用諸如有源天線設計、大規模MIMO和高級波束成形等技術。具有大量輸入和輸出的系統利用多條傳輸路徑,需要大量的ADC和DAC元件。數據轉換要求擴大后,采樣時鐘生成和同步就成了很大的設計挑戰。在復雜系統中,所需的時鐘信號數量可以輕松從幾個增加到上百個,如圖1所示。

圖1. 帶時鐘樹的數據轉換器系統
JESD204B標準定義了串行數據接口,可用來減少寬帶數據轉換器和其他系統IC之間的數據輸入/輸出數量。數據I/O數量的下降解決了高速、高位數數據轉換器的互連問題。以更少的互連提供寬帶數據轉換器的能力簡化了PCB布局布線,并實現更小的尺寸,且不降低整體系統性能。這些改進對于克服大部分應用中的系統尺寸和成本限制非常重要,包括無線基礎設施、便攜式儀器儀表、軍事應用和醫療超聲設備。
系統級考慮因素
在含有大型數據轉換器陣列的復雜系統中,處理更大的數據量要求從天線到處理單元具有高SNR(信噪比)。從時鐘角度來講,SNR受限于采樣時鐘的相位噪聲。較差的相位噪聲性能會造成抖動并增加EVM(誤差矢量幅度),從而嚴重降低SNR,影響系統性能。一般而言,時鐘信號質量用抖動來表示,其定義為目標帶寬內的相位噪聲積分。通常,相位噪聲積分限值為幾十kHz到幾十MHz。然而,寬帶噪聲同樣很重要,因為較高的時鐘信號噪底同樣會影響系統SNR。較差的采樣時鐘還可能含有雜散信號內容,會降低SFDR(無雜散動態范圍)。最終,考慮到占空比和上升/下降時間等參數,采樣時鐘質量不應僅在頻率域中定義,還應在時間域中定義。
這些是采樣時鐘的基本系統要求。然而,在大型數據轉換器陣列中,當不同陣列的時鐘之間需要同步時,通道間偏斜便是一個關鍵要求。這類系統的性能取決于同步數據陣列,因此對不同數據轉換器之間的偏斜很敏感。
功耗也是一個考慮因素。較高的功耗降低了系統效率,使溫度升高并增加冷卻成本和引線,且增加了潛在故障率。從商業角度出發,器件數和電路板空間同樣是很重要的,應加以控制。
時鐘樹結構
如前所述,在一個大規模系統中,單個時鐘IC通常沒有足夠的輸出來驅動所有分支。時鐘樹拓撲也許可以克服這個問題,且能同步多個器件、設備,或多個系統。圖2給出了一個時鐘樹拓撲框圖。注意,樹形結構的每一級都有延遲成分,由固定部分和不確定部分組成。
