為歐氏空間遙測的同相位系統實驗室演示器建立數字控制系統,用于將遙測臂之間的光學路徑差維持在10nm之內,這是確保有效衛星操作的必要條件。歐氏空間望遠鏡是為高分辨率光學檢測而優化的干涉儀儀器,利用對成孔徑技術對地理靜態軌道進行檢測。
為了獲得需要的同相位、所需的分辨率,就要使用復雜的計量和控制系統,以便確保光學配置具有必要的穩定性。集成了一個演示器(稱為 MIT,Michelson 干涉儀測試臺)用于對歐氏空間望遠鏡的兩個關鍵系統進行驗證,以便達到同相位條件,以及在Michelson干涉儀儀器中達到的穩定邊緣圖案樣式。
本文包含了對歐氏空間望遠鏡的概述、MIT性能的簡單描述以及完成的目標。
歐氏空間望遠鏡
例如歐氏空間望遠鏡等多孔徑望遠鏡配置為達到大型孔徑光學系統提出了一種獨特的可行方法。開發多個獨立望遠鏡孔徑的動機是為了提供從空間進行高分辨率的觀測,避免在大型孔徑(大重量)情況下以及使用自適應波前控制導致的局限性。多個望遠鏡光學鏡片可以比單筒大型鏡片直徑縮小許多,這是在重量以及外形上的重要改進。
帶有Fizeau 類型組合光學配置的Michelson 干涉儀被選用實現合成孔徑技術。望遠鏡配置包含了八個子望遠鏡陣列和光束組合望遠鏡位于陣列的中央,用來采集來自子望遠鏡的光線,并且可以在聚焦平面上產生干涉圖像。光學延遲線可以均衡來自每個子望遠鏡不同波前進入路徑的差別,最后到達覆蓋在上面的聚焦平面。干涉邊緣圖案樣式在聚焦平面上形成,并且具有良好的可見度,在干涉儀臂之間的光學路徑差(OPD)被保持在比相干長度小的范圍之內。隨著 OPD 的增加,邊緣圖案變得越來越黯淡,即其可見度越來越低。這是因為干涉儀并非工作在單一的波長上,而是工作在有限的頻帶上。
