隨著科技發展,極限條件下的試驗測量已成為進一步認識大自然的重要手段,這些試驗中往往測量的都是一些非常弱的物理量,比如弱磁、弱聲、弱光、弱振動等,由于這些微弱的信號一般都是通過傳感器進行電量轉換,使待測的弱信號轉換成電信號。實際測量時,噪聲和干擾無法回避,影響了測量的靈敏度和準確性。以研究測量pA級電流為目的,開發設計出準確度為0.5級的微電流測量儀,測量的最小范圍為10 pA.對于pA級電流測量,測量電路無法直接捕獲電流信號,需要進行I/U轉換。對于轉換后的電壓信號需進行進一步的放大,否則會被運算放大器的失調電壓、偏置電流這些直流信號干擾。問題在于,在放大捕獲待測信號的同時,工頻干擾、噪聲、電路失調等雜質信號也同時被放大,所以需要設計出相關的后續電路加以過濾、去除。對于工頻干擾,通過采取屏蔽、濾波即可。而對于電路失調等這些直流雜質信號的消除,是本文所要闡述的核心所在,即通過采用調制電路、差分電路過濾掉這些雜質直流信號。
1微電流測量方法概述
1.1測量方法
微弱信號檢測就是要從信號源中過濾掉干擾信號,增強/最大限度地還原有用的待測信號,提高信噪比(SNR),有效抑制噪聲是微電流測量的難點和重點。新的微電流檢測方法的提出及微電流測量儀的研制是目前該領域內的一大熱點。就檢測方法而言,目前主要有:取樣積分法、相關檢測法、噪聲分析法、調制解調法、小波變換法、高阻抗輸入法、光電耦合法、集成運放、計算機程序控制等,但取樣電阻法和運放反饋電流法是微電流測量常用的方法。
噪聲干擾是一種有效的壓制性干擾信號,根據噪聲的種類和特點,主要有2大來源:1)來自電子系統內部固有噪聲,包括運放的偏置電流、失調電壓,電子元件發熱產生的熱噪聲,數字電路干擾產生的脈沖式噪聲,開關電路產生的尖峰噪聲等;2)來自電子系統外部,諸如工頻干擾、射頻噪聲、大氣噪聲、機械噪聲等。測量中,對噪聲的處理極其重要,該文提出,微電流測量的關鍵在于抑制電路雜質直流信號和工頻干擾。
1.2微電流測量技術發展現狀
美國吉時利公司利用在靈敏電流測量儀器上的技術優勢,已經開發出6482型雙通道皮安表/電壓源,測量分辨率高達1 fA,6位半,測量范圍2 nA~20 mA.
2設計理論
2.1微電流一電壓轉換原理
由戴維南定理可知,任何一個兩端網絡都可看成一個等效電壓源Us與等效電阻Rs串聯,即Rs=Us/Is.運放反饋電流法測量原理如圖1所示。