利用合成材料制造的印刷微電子組件提供了輕薄、可撓曲的好處,而且能夠以更具成本效益且節能的方式進行生產,廣泛地應用在柔性顯示器與觸控屏幕、發光薄膜、RFID標簽以及太陽能電池。
有機電子可望作為傳統硅晶的替代技術,造就一個具發展前景的未來。如今,利用有機發光二極管(OLED)制造的柔性顯示器和發光壁紙正迅速發展中。
慕尼黑工業大學(Technische Universitat Munchen;TUM)的物理學家在一項國際性的合作計劃中證實,超薄聚合物電極可利用印刷的方式制造出來,而且還能成功地改善印刷薄膜的電氣特性。

更棘手的挑戰是必須在可撓性導電層之間進行接觸。在一般情況下,通常使用以結晶氧化銦錫制造的電子觸點。然而,這種結構存在許多缺點:氧化物比其上的聚合物層更易碎,因而可能限制電池的可撓性。此外,在制造過程中還會消耗大量的能量。最后,銦是一種數量非常有限的稀有元素。
就在幾個月前,美國加州羅倫斯柏克萊國家實驗室(Lawrence Berkeley National Laboratory;LBNL)的研究人員首次成功地在印刷過程中觀察到有機太陽能電池活性層中的聚合物分子交叉鏈接。Muller-Buschbaum的團隊與加州的研究人員們開始合作,利用這項技術,提高了聚合物電子組件的特性。

研究人員利用在柏克萊國家實驗室同步進行研究時所產生的X射線輻射。X射線被引導至新印刷的合成層并逐漸擴散。分子在印刷薄膜固化過程中的安排與方向,可以從擴散模式的變化來決定。
我們在研究工作中發現,這是有史以來第一次在物理化學工藝條件下的微小變化對于迭層的集結與特性帶來明顯的影響?!崩?,Claudia M. Palumbiny表示,“添加具有高沸點的溶劑提高了合成材料組成的偏析,從而改善了傳導分子的結晶。分子之間的距離縮小,同時提高了導電率?!?/span>
“由于X射線輻射極其密集,讓我們得以實現一個非常高的時間分辨率,”Claudia M. Palumbiny表示。這位遠從慕尼黑工業大學來的物理學家在加州柏克萊的實驗室中研究有機電子組成中排序并選擇傳送電荷載子的“阻障層”。如今,慕尼黑工業大學的研究團隊與美國的研究人員們已經聯手在《先進材料》(Advanced Materials)期刊中發表了這項研究結果。
