圖1. 頻率規劃示例。
許多現代ADC同時支持所有三種架構。例如,AD9680是一款具備可編程數字下變頻功能的雙通道1.25 GSPS ADC。此類雙通道ADC支持雙通道外差架構和直接采樣架構,一對轉換器合作則可支持直接變頻架構。
采用分立實施方案時,直接變頻架構的鏡像抑制挑戰可能相當難以克服。通過提高集成度并結合數字輔助處理,I/Q通道可以很好地匹配,從而大幅改善鏡像抑制。最近發布的AD9371的接收部分是一個直接變頻接收機,如圖2所示,注意它與圖1c的相似性。

圖2. AD9371的接收部分:單片直接變頻接收機。
雜散噪聲
任何采用頻率轉換的設計都需要作出很大努力來使不需要的帶內折頻最小化。這是頻率規劃最微妙的地方,涉及到可用元件與實際濾波器設計的平衡。某些雜散折疊問題在此略作說明,如需詳細解釋,請設計人員參閱參考文獻。
圖3顯示了ADC輸入頻率和前兩個諧波的折疊與輸入頻率(相對于奈奎斯特頻段)的關系。當通道帶寬遠小于奈奎斯特帶寬時,接收機設計人員的目標是選擇適當的工作點以將折疊的諧波置于通道帶寬之外。

圖3. ADC折頻。
接收機下變頻混頻器會增加復雜性。任何混頻器都會在器件內引起諧波。這些諧波全都混在一起,產生其他頻率。圖4顯示了這種影響。
圖4. 下變頻混頻器雜散。
圖3和圖4僅顯示了截止三階的雜散。實踐中還有其他更高階的雜散,設計人員需要處理由此而來的無雜散動態范圍問題。對于較窄的小數帶寬,細致精當的頻率規劃可以克服混頻器雜散問題。隨著帶寬增加,混頻器雜散問題成為重大障礙。由于ADC采樣頻率提高,有時候使用直接采樣架構來降低雜散會更切合實際。
接收機噪聲
接收機設計的很多工作是花在最小化噪聲系數 (NF) 上面。噪聲系數衡量信噪比的降低程度。
器件或子系統噪聲系數的影響是使輸出噪聲功率高于熱噪聲水平,即被噪聲系數放大。
級聯噪聲系數計算如下:
ADC之前的接收機增益的選擇以及所需ADC SNR的確定,是接收機總噪聲系數與瞬時動態范圍平衡的結果。圖5為要考慮的參數的示意圖。為了便于說明,接收機噪聲折算到ADC前端抗混疊濾波器之前,即被濾波之后的噪聲。ADC噪聲顯示為平坦的白噪聲,目標信號顯示為–1 dBFS的連續波 (CW) 信號音。
