圖2:不同頻率下的相位一致性。
在實際的MIMO測試系統中,無線電硬件應能夠跨多個通道采集和生成相位相干和相位對準的信號。許多現代電子戰系統利用多通道相位相干系統執行無源雷達系統的測向等任務,或在抗干擾通信中提供多徑冗余。例如,相控陣雷達使用數百個相位相干的發射/接收(Tx / Rx)模塊來實現快速電子束轉向,通過改變饋送組件的相應信號的相對相位,使有效輻射圖的陣列在期望的方向上被增強,在不期望的方向上被抑制。
合成孔徑干涉雷達(InSAR)等地理定位系統采用若干相位相干接收機,通過精確地定位發射或反射信號的位置來檢測地震和洪水等事件的位置。除了設計的復雜性增加外,多通道相位相干系統中緊密同步和精細對準也是國防與航空航天行業的嚴苛測試要求之一。
構建多通道相位相干系統的測試系統的主要難題是相干信號的相位對準。此外,系統需要能夠在相當長的時間內維持相位一致性和對準。然而,由于溫度、熱膨脹、電纜長度不匹配、不相關相位噪聲、ADC采樣時鐘、相位噪聲和量化噪聲等的影響,相位會發生漂移。在微波頻率下,電纜長度、放大器和濾波器之間的細微差異甚至也會導延遲或相移,從而破壞原有的關系。
對于多信道設計工程師來說,組件的相位穩定性、非線性AM/PM效應和群延遲變化都會引起相位失配。測向和波束賦形相關的許多應用要求通道之間的相位關系保持恒定,相位漂移不超過1°。
測試多通道相位相干系統
以下部分將討論使用模塊化軟件設計的儀器方法來應對多通道相位相干系統測試系統開發挑戰的技術。多通道系統面臨的第一個挑戰是通過創建一致且可靠的觸發機制來確保所有通道同時開始采集或生成數據。通常,通道之間的對準要求時間差小于1ns,而在實際應用中,布線往往成為實現這一目標的障礙。測試系統中的長電纜使得觸發時間需要加上較長的傳播時間,每米同軸電纜的傳播時間約5ns,因而需要簡化觸發器分配。
鑒于由偏移和抖動引起的延遲和時序不確定性,分配必要的時鐘和觸發來實現多設備同步并非易事。而基于PXI的模塊化儀器平臺就非常適合用來應對這些復雜性。PXI架構允許設計人員利用PXI的獨特功能來實現高級多設備同步,例如觸發總線、星型觸發器和公共系統參考時鐘。
一種同步方法是NI-TClk,該技術使用另一個時鐘域來實現采樣時鐘的對準以及觸發器的分配和接收3。多通道相位相干測試系統的設計人員可以使用這種方法將一開始沒對準但鎖相至公共參考時鐘的采樣時鐘進行對準,并且能夠實現各個設備的準確同步觸發。
圖3顯示了基于八個矢量信號收發器(VST)的8 x 8 MIMO配置,每個VST能夠在單個18槽機箱中生成和采集1 GHz瞬時RF帶寬信號,并使用NI TClk和一個共享的PXI參考時鐘實現偏斜低于500 ps的緊密同步。
![](/member/kindeditor/attached/image/20180122/20180122095821_96718.png)