一個高性能的熱電偶測溫,是不是有一個好的電路方案就夠了?其實不然,熱電偶測溫易受冷端溫度的干擾,需在PCB布板和結構上合理的設計才能消除干擾。接下來跟小編一起探討如何設計才能讓熱電偶的測溫性能更好。
有些小伙伴在電路設計之初,選擇了性能優越的測溫芯片和ADC,理論上要達到性能要求應綽綽有余,但實際測試卻不盡如意,這是為什么呢?其實,這大概率是冷端溫度的設計不合理導致的。熱電偶的物理特性決定了,它和其它的傳感器測溫不一樣,熱電偶只能檢測溫度差,是需要冷端的溫度作為參考的,冷端溫度的檢測是否可靠,直接影響熱電偶測溫的準確性和穩定性。那么,這個冷端的設計就顯得尤為重要,我們以ZAM6218A的Demo評估板為例,一起了解高性能的熱電偶測溫應如何設計。
如何保證冷端溫度精度
熱電偶線與測量電路連接的端為熱電偶的冷端(參比端),冷端的溫度作為參考溫度,對其檢測的精準性直接影響了整個測溫方案的精度。常規冷端溫度的檢測一般采用鉑電阻、NTC、數字測溫芯片等,冷端溫度的檢測越接近真實的冷端溫度,熱電偶整體的測溫精度也就越高。那么,在相同的冷端檢測方案下,如何讓冷端的檢測溫度接近真實冷端溫度呢?方法其實不難,通過調整PCB布局便可輕易達到。
我們以圖1中ZAM6218A的Dome評估板PCB布板圖為例進行說明,圖中的冷端溫度檢測芯片為TMP116,其旁邊為熱電偶線與檢測電路連接的冷端。通過下圖的方式布板后,數字測溫芯片TM116的檢測溫度與實際的冷端溫度誤差小于0.1℃。
圖1 TMP116測溫芯片冷端溫度檢測PCB布板
PCB布板要點:
· 冷端溫度檢測傳感器要靠近熱電偶冷端的位置放置,在電氣耐壓間距允許的情況下,越近越好;
· 冷端溫度檢測傳感器和冷端的連接點處要盡可能的增加鋪銅面積,不僅可以將真實冷端溫度與數字測試芯片檢測的溫度拉到同一水平,還能降低因環境溫度變化帶來的干擾;
· 熱電偶冷端連接處的鋪銅區與檢測電路的鋪銅區要完全隔離開,避免檢測電路產生的熱量通過鋪銅傳遞到冷端。
如何保持冷端溫度穩定
在熱電偶溫度采集過程中,環境溫度穩定也非常重要。由于冷端傳感器并不是直接通過電氣連接的方式來檢測真實冷端的溫度,當真實冷端處在溫度分布不均的空間環境下,冷端傳感器檢測的溫度與冷端的實際溫度之間是有較大偏差的,這就導致熱電偶產生了極大的測溫偏差,在環境相對惡劣的情況下甚至會產生2℃以上的測溫偏差,如帶有散熱風扇的機柜,其風扇產生分布不均的風速嚴重影響冷端溫度的檢測。那么我們如何保持環境溫度相對穩定呢?
我們還是以ZAM6218A的Dome評估板為例,圖2為評估板實物圖,在評估板冷端位置設計一個金屬結構件,以降低環境的干擾,同時還可將多通道的冷端溫度拉到同一溫度線。
圖2 ZAM6218A的Dome評估板實物
結構件設計要點:
· 熱電偶測溫電路板的兩面增加類似于保護罩的結構件,選用常規塑膠的即可,對精度要求比較高的,可以選用導熱率高的金屬結構件,實際測試塑膠件和金屬件對精度影響差別不大;
· 結構件要具有一定的氣密性,空氣中的氣流不能輕易透過電路板,尤其是冷端;
· 結構件是金屬類的,需要在結構件與冷端之間增加導熱率高的絕緣材料;
· 結構件是塑膠類的;結構件與冷端之間需要留有一定空間,不要與之接觸。
ZAM6218A評估板測試