當兩端加上電壓時,LED就會發光。光學隔離技術采用了一個LED以及一個光電檢測設備,利用光作為數據轉換的方法實現信號的跨隔離層傳輸。一個光電檢測器接收該LED所發出的光,并將其再轉換回最初的信號。
圖3 光學隔離技術
光電二極管
光學隔離技術是最常使用的隔離方法之一。采用光學隔離的優勢之一便是其抵抗電氣噪聲和磁噪聲干擾的能力。這種技術的也存在一些不足之處,包括受LED開關速率限制的傳輸速率、高功耗和LED損耗。
電容隔離技術
電容隔離技術基于一個隨電容極板上的電荷量而改變的電場。該電荷跨過一個隔離層而被檢測,并與所測得信號值成正比。
圖4 電容隔離技術
電容隔離技術的一個優勢是其抵抗磁噪聲干擾的能力。與光學隔離技術相比,電容隔離可以支持更高的數據傳輸速率,因為LED不需要進行開關操作。由于電容隔離技術涉及到用于數據傳輸電場的使用,因此它易受到外部電場的干擾。
感應耦合隔離技術
在十九世紀早期,丹麥物理學家漢斯?奧斯特發現,電流通過線圈時會產生磁場。后來人們發現,緊挨一個線圈所產生變化磁場的另一個線圈中會產生感應電流。第二只線圈中所產生的感應電壓和感應電流取決于第一個線圈中電流變化的速率。這一原理被稱為互感,并奠定了感應隔離技術的基礎。
圖5 感應耦合
感應隔離技術使用了一對通過一個絕緣層分離的線圈。該絕緣層防止任何物理信號的傳輸。信號可以通過改變流經其中一個線圈的電流進行傳輸,因為這樣會使跨過該絕緣層在第二個線圈中產生類似的感應電流。感應隔離技術可以提供與電容技術相似的高速傳輸。但是由于感應耦合涉及到用于數據傳輸的磁場的使用,因此它易受到外部磁場的干擾。
模擬隔離技術與數字隔離技術
現今,許多商業現成可用(COTS)組件都含有上述隔離實現技術之一。對于模擬I/O通道,您可以在模數轉換器(ADC)完成信號的量化處理之前(模擬隔離)或之后(數字隔離)在設備的模擬部分實現隔離功能。根據您的隔離實現在電路中位置的不同,您需要依據其中的一種技術來設計不同的電路。您可以基于您的數據采集系統性能、成本和物理需求,選擇模擬或數字隔離技術。圖6a和6b展示了實現隔離功能的不同階段。
圖6b 數字隔離技術